
Understanding and Implementing Passkeys
Justin Scott, CISSP

Chief Information Security Officer, Smart Communications

Adobe ColdFusion Summit
September 22, 2025



Hi, I’m Justin Scott
● BBS sysop in the mid 1990’s
● Won a copy of Allaire ColdFusion 4 at SysCon in 1999
● Architect and developer for hundreds of applications
● Network, Systems, and Database admin
● Smart Communications since 2009 as IT Director, VP

of Technology, and most recently Chief Information
Security Officer

● Patent awarded as a co-inventor on a system for
secure mail processing at correctional facilities

● Adobe Certified ColdFusion Professional*
● CISSP



Passkeys are 
Coming…

They use asymmetric encryption with 
public and private keys and are far more 

secure than passwords, but 
implementation is a mess right now.

Last Year I Said:



What are Passkeys?

Phishing resistant form of authentication
based on asymmetric cryptography and tied
to device biometrics or a master password.

Sponsored by the FIDO Alliance and major tech companies.



We’ve all Coded a Login Form
The “old” way:

Identify the user typically 
with a Username or Email.

Authenticate the user with a 
password (“something they 
know”).

May be enhanced with an 
additional factor such as an 
authenticator (TOTP) code, 
emailed link, SMS 
message, etc.



Single Sign-On
We can outsource or supplement 
authentication to a 3rd-party identity 
provider such as Microsoft, Google, Apple, 
Okta, social media platforms, or other 
SAML 2.0 or OAUTH compatible service.

May still be vulnerable to various attacks 
depending on the security of the outside 
platform.

A user’s account is now dependent upon 
their account with the 3rd-party service 
provider being available and in good 
standing (e.g. not locked out or disabled).



Memory fades, and people tend to forget 
their passwords, especially if following 

advice to use a unique passwords.

People Forget Passwords

People don’t want to remember a lot of 
passwords, so they reuse the same 

passwords everywhere. A successful attack 
on one provider can lead to more breaches.

Passwords get Reused

Passkeys solve all of these problems with 
passwords. They cannot be forgotten, 

reused, phished, or shared, and are not 
stored on the server to steal or abuse.

Passkeys Solve These

Passwords, by their nature, can be shared 
among multiple people or phished by an 
attacker through social engineering or fake 
authentication forms.

Phishable and Sharable

A representation of the password must be 
stored on the server side which can be 
harder than expected to get right (hash, salt, 
pepper, iterations, work factors...)

Server-Side Storage



Passkeys are generated by the user agent as 
a public-private key pair, and the private key 

is retained in secure storage or hardware.

Nothing to Remember

A new passkey gets generated for each 
registration, so there is no possibility of 

reusing the same passkey in multiple places.

Passkeys are Unique

Implementation is still early, users don’t 
have awareness and experience, and some 

have concerns about portability, vendor 
lock-in, and control over private keys.

Still Not Perfect

Passkey private keys cannot be exported by 
design, so an attacker cannot “trick” 
someone into giving them their Passkey.

Not Phishable or Sharable

The server only gets the public key, so we’re 
not storing anything sensitive in the 
database.

Asymmetric Cryptography



Terminology
● RP = Relying Party (i.e. your server/website)

Expressed as root domain of credential (can include subdomain)

● Browser = Exposes JS interface for Authenticator

● Authenticator = Software handling create/get

● CredentialID = Unique ID of a passkey



Asymmetric Cryptography
● Encryption that uses different keys to encrypt and then 

decrypt the same data (encrypt with one key, decrypt with the other)

● Known as a “key pair” consisting of a “public” key which 
can be shared (not secret) and a “private” key which 
should only ever be known to the user

● Basis of SSL/TLS certificates

● Much slower than symmetric cryptography, but fine for 
small chunks of data (vs. large documents)



Requirements
● Requires HTTPS – Passkeys only work in a 
secure context and require secure transport

● Localhost domains are treated as secure for this 
purpose (ex: sampleenterprises.localhost)

● Localhost IP is NOT considered secure (127.0.0.1)

● A User Agent (browser) that supports WebAuthn



How Do Passkeys Work?
Registration Ceremony

● RP (server) creates registration 
challenge upon request

● JavaScript calls credentials API: 
navigator.credentials.create()

● Authenticator generates key pair + 
returns attestation to server

● Server verifies attestation and 
stores credential ID + public key

Authentication Ceremony

● RP (server) creates authentication 
challenge upon request

● JavaScript calls credentials API: 
navigator.credentials.get()

● Authenticator signs challenge with 
private key and returns to Server

● Server verifies signature with 
stored public key; logs in user



Registration
Ceremony



Request Registration Challenge



Server JSON Challenge Response

ES256 (Elliptic Curve, alg = -7)
Fast, compact, widely supported

RS256 (RSA, alg = -257)
Larger, slower, but broadly compatible



Platform vs Cross-Platform

● “platform” (used in demo)
● Built-in (FaceID, TouchID, Windows Hello, 1Password, etc.)
● Bound to device or ecosystem, convenient

● “cross-platform”
● External keys (YubiKey, security key via USB, NFC, 

Bluetooth, etc.)
● Portable across devices

● Best practice: support both for flexibility



Browser Calls Authenticator API



Register Credential With Server



Credential Registration Response



Authentication 
Ceremony



Request Authentication Challenge



Server JSON Challenge Response



Browser Calls Authenticator API



Verify Credential With Server



ColdFusion Passkey 
Implementation



Modified base64 encoding format that is 
“URL safe”; swaps out certain characters; no 

built-in function support in ColdFusion, or 
even JavaScript for that matter.

Base64URL Encoding

Passkeys use asymmetric cryptography with 
public and private key pairs. No native 

support within ColdFusion. Have to drop 
into Java.

Asymmetric Encryption

But it can be done.

Not a Simple Task

Java classes available to help such as the 
WebAuthn library or Yubico Passkey library.

External Libraries

Concise Binary Object Representation
CBOR Object Signing and Encryption

Likely new for web developers, mainly used 
in low-power IoT devices.

CBOR/COSE Encoding



ColdFusion 2026

Native passkey functions have 
been announced which will 

make this a LOT easier!



Demo and Code



Device-Bound Session Credentials
● Traditional: cookies store session; portable, can be stolen

● Device-bound: session token tied to device/browser profile

● Benefits:
● Stolen tokens useless elsewhere
● Mitigates cookie harvesting
● Stronger session integrity

● Still emerging, but promising for future web security



Transitioning to Passkeys

● Start with MFA: passwords + TOTP or passkeys

● Add “Add a passkey” button in settings

● Educate users: “easier and safer login”

● Gradually shift login flow to highlight passkeys

● Offer to register a passkey after login if they don’t have one

● Ultimately force passkey registration as a condition of use



How Many Passkeys?

● Recommend at least two (e.g. desktop + phone)

● No need to limit, but if you want to limit, set it high (10+)

● More passkeys = More resilience against loss

● Do not limit to one; makes recovery more difficult and use across different 
platforms more difficult or impossible leading to lower adoption



Do We Still Need Passwords?

● Keep support for passwords for now (users still need education)

● Prefer or force passkey registration for new accounts

● Fall back to password if a passkey isn’t available



Recovery Strategy

● Support generation, storage, and use of recovery codes
● Generate 10 single-use, eight digit codes for the user to keep
● Codes can be used in place of a passkey or password when needed
● Invalidate each code after use and trigger an alert to the user
● Allow code refresh any time as needed through Profile

● Alternate fallback to SMS or email code/link

● Ultimately fall back to support with manual verification and reset



Adoption Roadmap

● Phase 1: Add passkeys alongside passwords
● Phase 2: Passwordless opt-in
● Phase 3: Passkey-first experience
● Phase 4: Optional full passwordless accounts



The Future of Authentication

● Passkeys + device-bound sessions = stronger end-to-
end authentication and session protection

● Reduced reliance on cookies & passwords
● Ecosystem improving: browser + OS support is 

rapidly maturing; password managers now support
● ColdFusion apps can adopt now to stay competitive 

and secure; CF2026 will include support natively!



AI Demo?



Giveaway!

Q&A



Thanks!
 

Contact Info:
leviathan@darktech.org

www.darktech.org

www.linkedin.com/in/justinscott


